login
A030533
Expansion of Molien series for 4-D extraspecial group 2^{1+2*2}.
5
1, 1, 5, 6, 15, 19, 35, 44, 69, 85, 121, 146, 195, 231, 295, 344, 425, 489, 589, 670, 791, 891, 1035, 1156, 1325, 1469, 1665, 1834, 2059, 2255, 2511, 2736, 3025, 3281, 3605, 3894, 4255, 4579, 4979, 5340, 5781, 6181, 6665, 7106, 7635
OFFSET
0,3
FORMULA
G.f.: (x^8-x^6+2*x^4-x^2+1)/(1+x^2)^2/(-1+x^2)^2/(1+x)^2/(-1+x)^2 (not simplified).
G.f.: (x^2-x+1)*(x^2+1) / ((x-1)^4*(x+1)^2). [Colin Barker, Jan 31 2013]
a(n) = n*(2*n^2-9*(-1)^n+13)/24. [Bruno Berselli, Jan 31 2013]
EXAMPLE
1+x^2+5*x^4+6*x^6+15*x^8+19*x^10+35*x^12+44*x^14+69*x^16+...
MATHEMATICA
CoefficientList[Series[(x^2 - x + 1) (x^2 + 1)/((x - 1)^4 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 1, 5, 6, 15, 19}, 50] (* Harvey P. Dale, May 05 2022 *)
PROG
(PARI) select(n->n, Vec((x^8-x^6+2*x^4-x^2+1)/(1+x^2)^2/(-1+x^2)^2/(1+x)^2/(-1+x)^2+O(x^99))) \\ Charles R Greathouse IV, Sep 24 2012
(Magma) [(n+1)*(2*n^2+4*n+15+9*(-1)^n)/24: n in [0..50]]; // Vincenzo Librandi, Oct 19 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved