login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030442
Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).
1
163, 57, 16, 4, 1, 3, 22, 86, 239, 541, 1068, 1912, 3181, 4999, 7506, 10858, 15227, 20801, 27784, 36396, 46873, 59467, 74446, 92094, 112711, 136613, 164132, 195616, 231429, 271951, 317578, 368722, 425811, 489289, 559616, 637268, 722737, 816531, 919174
OFFSET
0,1
FORMULA
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Colin Barker, May 18 2014
G.f.: -(386*x^4-1136*x^3+1361*x^2-758*x+163) / (x-1)^5. - Colin Barker, May 18 2014
a(n) = A059259(2*n-5,4), n>4. - Mathew Englander, May 18 2014
E.g.f.: exp(x)*(978 - 636*x + 195*x^2 - 36*x^3 + 4*x^4)/6. - Stefano Spezia, Sep 11 2022
MAPLE
A030442:=n->(1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); seq(A030442(n), n=0..40); # Wesley Ivan Hurt, May 19 2014
MATHEMATICA
Table[(1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978), {n, 0, 40}] (* Wesley Ivan Hurt, May 19 2014 *)
PROG
(PARI) a(n) = (1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); \\ Michel Marcus, May 18 2014
CROSSREFS
Cf. A059259.
Sequence in context: A214185 A214236 A349511 * A061574 A185444 A217546
KEYWORD
nonn,easy
AUTHOR
Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas), Dec 11 1999
STATUS
approved