login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030017
a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.
16
1, 2, 7, 25, 88, 311, 1095, 3858, 13591, 47881, 168688, 594289, 2093693, 7376120, 25986209, 91549913, 322532092, 1136286727, 4003159847, 14103208628, 49685873471, 175044281583, 616684348614, 2172590743211, 7654078700221, 26965465508072, 94999850216565
OFFSET
1,2
COMMENTS
Apply "INVERT" transform to primes.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe)
N. J. A. Sloane, Transforms
FORMULA
INVERT: a's from b's in 1+Sum a_i x^i = 1/(1-Sum b_i x^i).
G.f: (1-b(x)/(b(x)-1))*x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016
EXAMPLE
a(5) = 25*2 +7*3 +2*5 + 1*7 = 88.
MAPLE
a:= proc(n) option remember; `if`(n=1, 1,
add(a(n-i)*ithprime(i), i=1..n-1))
end:
seq(a(n), n=1..29); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
CoefficientList[ Series[ 1/(1 - Sum[ Prime[ n ]*x^n, {n, 1, 25} ] ), {x, 0, 25} ], x ]
(* Second program: *)
a[1] = 1; a[m_] := a[m] = Sum[Prime@ k a[m - k], {k, m - 1}]; Table[a@ n, {n, 25}] (* Michael De Vlieger, Dec 13 2016 *)
CROSSREFS
Row sums of A340991(n-1).
Cf. A000040.
Sequence in context: A289446 A370022 A289598 * A131430 A007484 A070859
KEYWORD
easy,nonn,nice
STATUS
approved