login
Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^6.
9

%I #11 Aug 11 2018 10:44:15

%S 1,6,9,-10,-24,36,65,-102,-153,232,327,-468,-663,918,1287,-1768,-2391,

%T 3240,4289,-5676,-7488,9758,12753,-16524,-21250,27300,34758,-44128,

%U -55896,70380,88519,-110874,-138285,172136,213315

%N Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^6.

%H Seiichi Manyama, <a href="/A029843/b029843.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: x^(3/4)*theta_2(sqrt(x))^6/theta_2(x)^6, where theta_() is the Jacobi theta function. - _Ilya Gutkovskiy_, Dec 04 2017

%Y Cf. A029838, A029839, A029840, A029841, A029842, A029844.

%K sign

%O 0,2

%A _N. J. A. Sloane_