login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k and k^3 have the same set of digits.
10

%I #22 Sep 08 2022 08:44:50

%S 0,1,10,100,1000,10000,100000,107624,109573,132485,138624,159406,

%T 165640,192574,205738,215806,251894,281536,318725,419375,427863,

%U 568314,642510,713960,953867,954086,963218,965760,1000000,1008529,1023479

%N Numbers k such that k and k^3 have the same set of digits.

%C Conjecture: there exists some m and N for which a(n) = m + n for all n >= N. - _Charles R Greathouse IV_, Jun 28 2011

%H Nathaniel Johnston, <a href="/A029795/b029795.txt">Table of n, a(n) for n = 1..500</a>

%e 109573^3 = 1315559990715517. Since both numbers use the digits 0, 1, 3, 5, 7, 9, and no others, 109573 is in the sequence.

%p seq(`if`(convert(convert(n, base, 10), set) = convert(convert(n^3, base, 10), set), n, NULL), n=0..500000); # _Nathaniel Johnston_, Jun 28 2011

%t Select[Range[0, 199999], Union[IntegerDigits[#]] == Union[IntegerDigits[#^3]] &] (* _Alonso del Arte_, Jan 12 2020 *)

%o (Magma) [ n: n in [0..8*10^6] | Set(Intseq(n)) eq Set(Intseq(n^3)) ]; // _Bruno Berselli_, Jun 28 2011

%o (PARI) isA029795(n)=Set(Vec(Str(n)))==Set(Vec(Str(n^3))) \\ _Charles R Greathouse IV_, Jun 28 2011

%Y Cf. A029793, A029797, A232659-A232662.

%K nonn,base

%O 1,3

%A _Patrick De Geest_