login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029795
Numbers k such that k and k^3 have the same set of digits.
10
0, 1, 10, 100, 1000, 10000, 100000, 107624, 109573, 132485, 138624, 159406, 165640, 192574, 205738, 215806, 251894, 281536, 318725, 419375, 427863, 568314, 642510, 713960, 953867, 954086, 963218, 965760, 1000000, 1008529, 1023479
OFFSET
1,3
COMMENTS
Conjecture: there exists some m and N for which a(n) = m + n for all n >= N. - Charles R Greathouse IV, Jun 28 2011
LINKS
EXAMPLE
109573^3 = 1315559990715517. Since both numbers use the digits 0, 1, 3, 5, 7, 9, and no others, 109573 is in the sequence.
MAPLE
seq(`if`(convert(convert(n, base, 10), set) = convert(convert(n^3, base, 10), set), n, NULL), n=0..500000); # Nathaniel Johnston, Jun 28 2011
MATHEMATICA
Select[Range[0, 199999], Union[IntegerDigits[#]] == Union[IntegerDigits[#^3]] &] (* Alonso del Arte, Jan 12 2020 *)
PROG
(Magma) [ n: n in [0..8*10^6] | Set(Intseq(n)) eq Set(Intseq(n^3)) ]; // Bruno Berselli, Jun 28 2011
(PARI) isA029795(n)=Set(Vec(Str(n)))==Set(Vec(Str(n^3))) \\ Charles R Greathouse IV, Jun 28 2011
CROSSREFS
KEYWORD
nonn,base
STATUS
approved