login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029743
Primes with distinct digits.
32
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 317, 347, 349, 359, 367, 379, 389
OFFSET
1,1
COMMENTS
This sequence has 283086 terms, the last being 987654103 = A007810(9). - Jud McCranie
Intersection of A010784 and A000040; A178788(a(n)) * A010051(a(n)) = 1. [Reinhard Zumkeller, Sep 25 2011]
LINKS
MATHEMATICA
t={}; Do[p=Prime[n]; If[Select[Transpose[Tally[IntegerDigits[p]]][[2]], #>1 &]=={}, AppendTo[t, p]], {n, 77}]; t (* Jayanta Basu, May 04 2013 *)
Select[Prime[Range[80]], Max[DigitCount[#]]<2&] (* Harvey P. Dale, Sep 13 2020 *)
PROG
(Haskell)
a029743 n = a029743_list !! (n-1)
a029743_list = filter ((== 1) . a010051) a010784_list
-- Reinhard Zumkeller, Sep 25 2011
(Python)
from sympy import isprime
from itertools import permutations as P
dist = [p for d in range(1, 11) for p in P("0123456789", d) if p[0] != "0"]
afull = [t for t in (int("".join(p)) for p in dist) if isprime(t)]
print(afull[:100]) # Michael S. Branicky, Aug 04 2022
CROSSREFS
KEYWORD
nonn,fini,full,base
STATUS
approved