%I #14 May 21 2013 11:17:28
%S 4807,46189,290719,423181,753763,1188847,3863233,8457823,8810413,
%T 15058963,16948789,23524489,33402841,37912087,40018303,41874661,
%U 43401511,58953817,62012989,73792981,75598687,89269333,107492437,140757067
%N Quasi-Carmichael numbers to base 10: squarefree composites n such that (n,2*3*5*7) = 1 and prime p|n ==> p-10|n-10.
%C If multiples of 2, 3, 5 and 7 are not excluded, then terms like 10, 55, 66, 91, 130, 154,... belong to the sequence. - _Giovanni Resta_, May 21 2013
%H Giovanni Resta, <a href="/A029553/b029553.txt">Table of n, a(n) for n = 1..268</a> (terms < 10^12)
%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers.</a>
%t qcm[n_, d_] := Block[{p, e}, {p, e} = Transpose@FactorInteger@n; Length[p] > 1 && Max[e] == 1 && d < Min[p] && And @@ IntegerQ /@ ((n - d)/(p - d))]; Select[Range[10^6], qcm[#, 10] &] (* _Giovanni Resta_, May 21 2013 *)
%K nonn
%O 1,1
%A _David W. Wilson_