login
A029349
Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^10)).
0
1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 3, 1, 3, 2, 4, 2, 5, 3, 5, 3, 7, 4, 7, 5, 9, 5, 10, 7, 11, 7, 13, 9, 14, 10, 16, 11, 18, 13, 20, 14, 22, 16, 24, 18, 27, 20, 29, 22, 32, 24, 35, 27, 38, 29, 41, 32, 45, 35, 48, 38, 52
OFFSET
0,11
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 1, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, -1).
FORMULA
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=0, a(6)=1, a(7)=1, a(8)=1, a(9)=0, a(10)=2, a(11)=1, a(12)=2, a(13)=1, a(14)=3, a(15)=1, a(16)=3, a(17)=2, a(18)=4, a(19)=2, a(20)=5, a(21)=3, a(22)=5, a(23)=3, a(24)=7, a(25)=4, a(26)=7, a(n)=a(n-4)+a(n-6)+a(n-7)-a(n-11)-a(n-13)- a(n-14)-a(n-16)+ a(n-20)+a(n-21)+a(n-23)-a(n-27). - Harvey P. Dale, Aug 21 2015
MATHEMATICA
CoefficientList[Series[1/((1-x^4)(1-x^6)(1-x^7)(1-x^10)), {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 0, 0, 1, 0, 1, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, -1}, {1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 3, 1, 3, 2, 4, 2, 5, 3, 5, 3, 7, 4, 7}, 100] (* Harvey P. Dale, Aug 21 2015 *)
PROG
(PARI) Vec(1/(1-x^4)/(1-x^6)/(1-x^7)/(1-x^10)+O(x^99)) \\ Charles R Greathouse IV, Aug 29 2017
CROSSREFS
Sequence in context: A079413 A337787 A027351 * A372205 A168676 A202327
KEYWORD
nonn,easy
AUTHOR
STATUS
approved