login
A029073
Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^8)).
5
1, 1, 1, 1, 2, 2, 2, 3, 5, 5, 5, 6, 8, 8, 9, 11, 14, 14, 15, 17, 20, 21, 23, 26, 30, 31, 33, 36, 41, 43, 46, 50, 56, 58, 61, 66, 73, 76, 80, 86, 94, 97, 102, 109, 118, 122, 128, 136, 146, 151, 158, 167, 178, 184, 192
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, 7 and 8. - Ilya Gutkovskiy, May 18 2017
REFERENCES
J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. The g.f. is G_{rot}(t) on page 122.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1,0,1,0,-1,0,-1,0,1,0,-1,1,0,0,1,-1).
MAPLE
1/( (1-x)*(1-x^4)*(1-x^7)*(1-x^8) );
CROSSREFS
Sequence in context: A309256 A095972 A091974 * A376812 A058618 A135213
KEYWORD
nonn,easy
AUTHOR
STATUS
approved