login
A028916
Friedlander-Iwaniec primes: Primes of form a^2 + b^4.
38
2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437
OFFSET
1,1
COMMENTS
John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes.
A256852(A049084(a(n))) > 0. - Reinhard Zumkeller, Apr 11 2015
Primes in A111925. - Robert Israel, Oct 02 2015
Its intersection with A185086 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Cunningham calls these semi-quartan primes. - Charles R Greathouse IV, Aug 21 2017
Primes of the form (x^2 + y^2)/2, where x > y > 0, such that (x-y)/2 or (x+y)/2 is square. - Thomas Ordowski, Dec 04 2017
Named after the Canadian mathematician John Benjamin Friedlander (b. 1941) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 19 2021
LINKS
Art of Problem Solving, Fermat's Two Squares Theorem.
A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics, Vol. 36 (1907), pp. 145-174.
John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, Proc. Nat. Acad. Sci., Vol. 94 (1997), pp. 1054-1058.
J. Friedlander and H. Iwaniec, The polynomial x^2 + y^4 captures its primes, arXiv:math/9811185 [math.NT], 1998; Ann. of Math. 148 (1998), 945-1040.
Charles R Greathouse IV, Tables of special primes.
EXAMPLE
2 = 1^2 + 1^4.
5 = 2^2 + 1^4.
17 = 4^2 + 1^4 = 1^2 + 2^4.
MAPLE
N:= 10^5: # to get all terms <= N
S:= {seq(seq(a^2+b^4, a = 1 .. floor((N-b^4)^(1/2))), b=1..floor(N^(1/4)))}:
sort(convert(select(isprime, S), list)); # Robert Israel, Oct 02 2015
MATHEMATICA
nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)
PROG
(PARI) list(lim)=my(v=List([2]), t); for(a=1, sqrt(lim\=1), forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4; if(isprime(t), listput(v, t)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jun 12 2013
(Haskell)
a028916 n = a028916_list !! (n-1)
a028916_list = map a000040 $ filter ((> 0) . a256852) [1..]
-- Reinhard Zumkeller, Apr 11 2015
CROSSREFS
Cf. A000290, A000583, A000040, A256852, A256863 (complement), A002645 (subsequence), subsequence of A247857.
Primes of form n^2 + b^4, b fixed: A002496 (b = 1), A243451 (b = 2), A256775 (b = 3), A256776 (b = 4), A256777 (b = 5), A256834 (b = 6), A256835 (b = 7), A256836 (b = 8), A256837 (b = 9), A256838 (b = 10), A256839 (b = 11), A256840 (b = 12), A256841 (b = 13).
Sequence in context: A025537 A245784 A247068 * A100272 A107630 A078523
KEYWORD
nonn
EXTENSIONS
Title expanded by Jonathan Sondow, Oct 02 2015
STATUS
approved