login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n+3).
62

%I #168 Feb 12 2024 02:28:04

%S 0,4,10,18,28,40,54,70,88,108,130,154,180,208,238,270,304,340,378,418,

%T 460,504,550,598,648,700,754,810,868,928,990,1054,1120,1188,1258,1330,

%U 1404,1480,1558,1638,1720,1804,1890,1978,2068,2160,2254,2350,2448,2548,2650

%N a(n) = n*(n+3).

%C n*(n-3), for n >= 3, is the number of [body] diagonals of an n-gonal prism. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)

%C a(n) = A028387(n)-1. Half of the difference between n(n+1)(n+2)(n+3) and the largest square less than it. Calling this difference "SquareMod": a(n) = (1/2)*SquareMod(n(n+1)(n+2)(n+3)). - _Rainer Rosenthal_, Sep 04 2004

%C n != -2 such that x^4 + x^3 - n*x^2 + x + 1 is reducible over the integers. Starting at 10: n such that x^4 + x^3 - n*x^2 + x + 1 is a product of irreducible quadratic factors over the integers. - _James R. Buddenhagen_, Apr 19 2005

%C If a 3-set Y and a 3-set Z, having two element in common, are subsets of an n-set X then a(n-4) is the number of 3-subsets of X intersecting both Y and Z. - _Milan Janjic_, Oct 03 2007

%C Starting with offset 1 = binomial transform of [4, 6, 2, 0, 0, 0, ...]. - _Gary W. Adamson_, Jan 09 2009

%C The sequence provides all nonnegative integers m such that 4*m + 9 is a square. - _Vincenzo Librandi_, Mar 03 2013

%C The second-order linear recurrence relations b(n)=3*b(n-1) + a(m-3)*b(n-2), n>=2, b(0)=0, b(1)=1, have closed form solutions involving only powers of m and 3-m where m>=4 is a positive integer; and lim_{n->infinity} b(n+1)/b(n) = 4. - _Felix P. Muga II_, Mar 18 2014

%C If a rook is placed at a corner of an n X n chessboard, the expected number of moves for it to reach the opposite corner is a(n-1). (See Mathematics Stack Exchange link.) - _Eric M. Schmidt_, Oct 29 2014

%C Partial sums of the even composites (which are A005843 without the 2). - _R. J. Mathar_, Sep 09 2015

%C a(n) is the number of segments necessary to represent n squares of area 1, 4, ..., n^2 having the upper and left sides overlapped:

%C __ __ __ __ __ __ __ __ __ __

%C |__| |__| | |__| | | |__| | | |

%C |_____| |__ __| | |__ __| | |

%C |__ __ __| |__ __ __| |

%C |__ __ __ __|

%C 4 10 18 28 - _Stefano Spezia_, May 29 2023

%H Charles R Greathouse IV, <a href="/A028552/b028552.txt">Table of n, a(n) for n = 0..10000</a>

%H Patrick De Geest, <a href="http://www.worldofnumbers.com/consemor.htm">Palindromic Quasipronics of the form n(n+x)</a>.

%H Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>.

%H Mathematics Stack Exchange, <a href="http://math.stackexchange.com/questions/996452/expected-number-of-turns-for-a-rook-to-move-to-top-right-most-corner">Expected number of turns for a rook to move to top right-most corner?</a>.

%H Felix P. Muga II, <a href="https://www.researchgate.net/publication/267327689_Extending_the_Golden_Ratio_and_the_Binet-de_Moivre_Formula">Extending the Golden Ratio and the Binet-de Moivre Formula</a>, Preprint on ResearchGate, March 2014.

%H Aleksandar Petojević, <a href="http://dx.doi.org/10.5937/MatMor0801037P">A Note about the Pochhammer Symbol</a>, Mathematica Moravica, Vol. 12-1 (2008), 37-42.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 2*A000096(n).

%F a(A002522(n)) = A156798(n). - _Reinhard Zumkeller_, Feb 16 2009

%F a(n) = a(n-1) + 2*(n+1) for n>0, with a(0)=0. - _Vincenzo Librandi_, Aug 05 2010

%F Sum_{n>=1} 1/a(n) = 11/18 via Sum_{n>=0} 1/((n+x)*(n+y)) = (psi(x)-psi(y))/ (x-y). - _R. J. Mathar_, Mar 22 2011

%F G.f.: 2*x*(2 - x)/(1 - x)^3. - _Arkadiusz Wesolowski_, Dec 31 2011

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=4, a(2)=10. - _Harvey P. Dale_, Feb 05 2012

%F a(n) = 4*C(n+1,2) - 2*C(n,2) for n>=0. - _Felix P. Muga II_, Mar 11 2014

%F a(-3 - n) = a(n) for all n in Z. - _Michael Somos_, Mar 18 2014

%F E.g.f.: (x^3 + 4*x)*exp(x). - _G. C. Greubel_, Jul 20 2017

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - 5/18. - _Amiram Eldar_, Jan 15 2021

%F From _Amiram Eldar_, Feb 12 2024: (Start)

%F Product_{n>=1} (1 - 1/a(n)) = 2*cos(sqrt(13)*Pi/2)/Pi.

%F Product_{n>=1} (1 + 1/a(n)) = -6*cos(sqrt(5)*Pi/2)/Pi. (End)

%e G.f. = 4*x + 10*x^2 + 18*x^3 + 28*x^4 + 40*x^5 + 54*x^6 + 70*x^7 + 88*x^8 + ...

%p A028552 := proc(n) n*(n+3); end proc: # _R. J. Mathar_, Jan 29 2011

%t LinearRecurrence[{3,-3,1},{0,4,10},50] (* _Harvey P. Dale_, Feb 05 2012 *)

%t Table[ChineseRemainder[{n, n + 1}, {n + 2, n + 3}], {n, -1, 80}] (* _Zak Seidov_, Oct 25 2014 *)

%o (Magma) [n*(n+3): n in [0..150]]; // _Vincenzo Librandi_, Apr 21 2011

%o (PARI) a(n)=n*(n+3) \\ _Charles R Greathouse IV_, Mar 16 2012

%o (Maxima) makelist(n*(n+3),n,0,20); /* _Martin Ettl_, Jan 22 2013 */

%Y Cf. A000096, A002522, A005843, A028387, A062145, A156798.

%K nonn,easy,nice

%O 0,2

%A _Patrick De Geest_