login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Character of extremal vertex operator algebra of rank 45/2.
0

%I #12 Feb 29 2020 18:57:50

%S 1,0,0,4920,89955,977769,7670445,48447405,260865495,1241931125,

%T 5354625996,21268009665,78809488530,275102649810,911548565730,

%U 2884607044338,8761626447030,25649311876605,72623115075205,199467098107110,532810313084637,1387200530781195

%N Character of extremal vertex operator algebra of rank 45/2.

%D G. Höhn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.

%H G. Höhn (gerald(AT)math.ksu.edu), Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Doctoral Dissertation, Univ. Bonn, Jul 15 1995 (<a href="http://www.math.ksu.edu/~gerald/papers/dr.pdf">pdf</a>, <a href="http://www.math.ksu.edu/~gerald/papers/dr.ps.gz">ps</a>).

%F G.f.: x^(2*r/24) * (B(x)^(2*r) - 2*r*B(x)^(2*r-24) - r*(47-2*r)*B(x)^(2*r-48) where B(x) = x^(-1/24) * Product_{k>=0} (1+x^(2*k+1)) = x^(-1/24) * A000700 and r = 45/2. - _Sean A. Irvine_, Feb 29 2020

%Y Cf. A000700.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Feb 29 2020