login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027467
Triangle whose (n,k)-th entry is 15^(n-k)*binomial(n,k).
7
1, 15, 1, 225, 30, 1, 3375, 675, 45, 1, 50625, 13500, 1350, 60, 1, 759375, 253125, 33750, 2250, 75, 1, 11390625, 4556250, 759375, 67500, 3375, 90, 1, 170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1, 2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1
OFFSET
0,2
FORMULA
Numerators of lower triangle of (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
Sum_{k=0..n} T(n,k)*x^k = (15 + x)^n.
EXAMPLE
Triangle begins:
1;
15, 1;
225, 30, 1;
3375, 675, 45, 1;
50625, 13500, 1350, 60, 1;
759375, 253125, 33750, 2250, 75, 1;
11390625, 4556250, 759375, 67500, 3375, 90, 1;
170859375, 79734375, 15946875, 1771875, 118125, 4725, 105, 1;
2562890625, 1366875000, 318937500, 42525000, 3543750, 189000, 6300, 120, 1;
MATHEMATICA
Table[Binomial[n, k]15^(n-k), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 31 2017 *)
PROG
(Magma) [(15)^(n-k)*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
(Sage) flatten([[(15)^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
CROSSREFS
Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), A147716 (q=14), this sequence (q=15).
Sequence in context: A131514 A049327 A030527 * A049375 A049224 A223517
KEYWORD
nonn,tabl
EXTENSIONS
Simpler definition from Philippe Deléham, Nov 10 2008
STATUS
approved