login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027466
Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j).
13
1, 7, 1, 49, 14, 1, 343, 147, 21, 1, 2401, 1372, 294, 28, 1, 16807, 12005, 3430, 490, 35, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1
OFFSET
0,2
COMMENTS
T(i,j) is the number of i-permutations of 8 objects a,b,c,d,e,f,g,h, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
Triangle of coefficients in the expansion of (7 + x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 21 2018
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
LINKS
FORMULA
Cube of lower triangular normalized Binomial matrix.
Numerators of lower triangle of (a( i, j ))^3 where a( i, j ) = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 otherwise.
T(0,0) = 1; T(n,k) = 7 T(n-1,k) + T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018
EXAMPLE
1;
7, 1;
49, 14, 1;
343, 147, 21, 1;
2401, 1372, 294, 28, 1;
16807, 12005, 3430, 490, 35, 1;
117649, 100842, 36015, 6860, 735, 42, 1;
823543, 823543, 352947, 84035, 12005, 1029, 49, 1;
5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1;
MAPLE
for i from 0 to 8 do seq(binomial(i, j)*7^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
MATHEMATICA
Flatten[Table[Binomial[i, j]7^(i-j), {i, 0, 10}, {j, 0, i}]] (* Harvey P. Dale, Dec 03 2012 *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *).
Table[CoefficientList[ Expand[(7 + x)^n], x], {n, 0, 8}] // Flatten (* Zagros Lalo, Jul 22 2018 *)
PROG
(GAP) Flat(List([0..8], i->List([0..i], j->Binomial(i, j)*7^(i-j)))); # Muniru A Asiru, Jul 21 2018
CROSSREFS
Sequence in context: A188728 A264617 A038267 * A218017 A075502 A052104
KEYWORD
nonn,tabl,easy
EXTENSIONS
Simpler definition from N. J. A. Sloane
STATUS
approved