login
A027282
a(n) = self-convolution of row n of array T given by A026584.
16
1, 2, 8, 40, 222, 1296, 7770, 47324, 291260, 1806220, 11266718, 70609316, 444231564, 2803975860, 17748069294, 112609964308, 716010467122, 4561107325336, 29103104031990, 185973253609716, 1189979068401564, 7623432519587692, 48891854980251090, 313874287333373820
OFFSET
0,2
COMMENTS
Bisection of A026585.
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} A026584(n, k)*A026584(n, 2*n-k).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Sum[T[n, k]*T[n, 2*n-k], {k, 0, 2*n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 15 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A027282(n): return sum(T(n, j)*T(n, 2*n-j) for j in (0..2*n))
[A027282(n) for n in (0..40)] # G. C. Greubel, Dec 15 2021
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 26 2019
STATUS
approved