login
A026815
Number of partitions of n in which the greatest part is 9.
24
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7657, 8824, 10156, 11648, 13338, 15224, 17354, 19720, 22380
OFFSET
0,12
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1).
FORMULA
G.f.: x^9 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)). - Colin Barker, Feb 22 2013
a(n) = A008284(n,9). - Robert A. Russell, May 13 2018
MAPLE
part_ZL:=[S, {S=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: seq(count(subs(r=9, part_ZL), size=m), m=1..50); # Zerinvary Lajos, Mar 09 2007
MATHEMATICA
Table[ Length[ Select[ Partitions[n], First[ # ] == 9 & ]], {n, 1, 60} ]
CoefficientList[Series[x^9/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1}, Append[Table[0, {44}], 1], 136], 35] (* Robert A. Russell, May 17 2018 *)
PROG
(PARI) x='x+O('x^99); concat(vector(9), Vec(x^9/prod(k=1, 9, 1-x^k))) \\ Altug Alkan, May 17 2018
(GAP) List([0..70], n->NrPartitions(n, 9)); # Muniru A Asiru, May 17 2018
CROSSREFS
Essentially same as A008638.
Cf. A008284.
Sequence in context: A182805 A309058 A218509 * A341913 A008638 A008632
KEYWORD
nonn,easy
EXTENSIONS
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017
STATUS
approved