login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026337
a(n) = 4^n*(4^n - 1)/2.
3
0, 6, 120, 2016, 32640, 523776, 8386560, 134209536, 2147450880, 34359607296, 549755289600, 8796090925056, 140737479966720, 2251799780130816, 36028796884746240, 576460751766552576, 9223372034707292160, 147573952581086478336, 2361183241400462868480
OFFSET
0,2
FORMULA
a(n) = binomial(4^n, 2), n >= 0. - Zerinvary Lajos, Jan 07 2008
From R. J. Mathar, Mar 20 2009: (Start)
a(n) = 20*a(n-1) - 64*a(n-2).
G.f.: 6*x/((1-4*x)*(1-16*x)). (End)
a(n) = 6*A166984(n-1). - R. J. Mathar, Jun 23 2013
E.g.f.: exp(10*x)*sinh(6*x). - G. C. Greubel, Oct 02 2024
MAPLE
seq(binomial(4^n, 2), n=0..18); # Zerinvary Lajos, Jan 07 2008
MATHEMATICA
Table[4^n (4^n-1)/2, {n, 0, 30}] (* or *) LinearRecurrence[{20, -64}, {0, 6}, 30] (* Harvey P. Dale, Nov 05 2023 *)
PROG
(Magma) [4^n*(4^n-1)/2: n in [0..30]]; // Vincenzo Librandi, May 01 2011
(SageMath) [binomial(4^n, 2) for n in range(21)] # G. C. Greubel, Oct 02 2024
CROSSREFS
Cf. A166984.
Sequence in context: A001516 A350712 A378780 * A223629 A065888 A246191
KEYWORD
nonn
STATUS
approved