login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(d(n)-r(n))/5, where d = A026066 and r is the periodic sequence with fundamental period (0,3,1,0,1).
1

%I #15 Oct 21 2022 21:29:47

%S 21,33,49,68,90,116,145,179,217,259,306,357,414,476,543,616,694,779,

%T 870,967,1071,1181,1299,1424,1556,1696,1843,1999,2163,2335,2516,2705,

%U 2904,3112,3329,3556,3792,4039,4296,4563,4841,5129,5429,5740,6062,6396,6741

%N (d(n)-r(n))/5, where d = A026066 and r is the periodic sequence with fundamental period (0,3,1,0,1).

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1, 0, 1, -3, 3, -1).

%F a(n)=(n + 7)*(n^2 + 35*n + 90)/30 - 1/5*(1 + ( - 1/2 + 3/10*5^(1/2))*cos(2*n*Pi/5) + (1/5*2^(1/2)*(5 + 5^(1/2))^(1/2) + 1/10*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(2*n*Pi/5) + ( - 1/2 - 3/10*5^(1/2))*cos(4*n*Pi/5) + ( - 1/10*2^(1/2)*(5 + 5^(1/2))^(1/2) + 1/5*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(4*n*Pi/5)) - _Richard Choulet_, Dec 14 2008

%F a(n)= 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-5) -3*a(n-6) +3*a(n-7) -a(n-8). G.f.: -x^7*(-21+30*x-13*x^2+x^3+20*x^5-29*x^6+11*x^7)/( (x^4+x^3+x^2+x+1) * (x-1)^4). - _R. J. Mathar_, Oct 05 2009

%t LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{21,33,49,68,90,116,145,179},60] (* _Harvey P. Dale_, Sep 10 2014 *)

%Y Cf. A152892.

%K nonn,easy

%O 7,1

%A _Clark Kimberling_

%E Corrected by _T. D. Noe_, Dec 11 2006