login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026065
a(n) = (d(n)-r(n))/5, where d = A026063 and r is the periodic sequence with fundamental period (1,4,0,0,0).
1
14, 23, 36, 51, 69, 90, 114, 143, 175, 211, 251, 295, 345, 399, 458, 522, 591, 667, 748, 835, 928, 1027, 1134, 1247, 1367, 1494, 1628, 1771, 1921, 2079, 2245, 2419, 2603, 2795, 2996, 3206, 3425, 3655, 3894, 4143, 4402, 4671, 4952, 5243, 5545, 5858, 6182, 6519, 6867, 7227, 7599, 7983, 8381
OFFSET
6,1
FORMULA
a(n) = (n + 6)*(n^2 + 30*n + 71)/30 - 1/5*(1 + 2/5*5^(1/2)*cos(2*n*Pi/5) + 2/5*2^(1/2)*(5 + 5^(1/2))^(1/2)*sin(2*n*Pi/5) - 2/5*5^(1/2)*cos(4*n*Pi/5) + 2/5*2^(1/2)*(5 - 5^(1/2))^(1/2)*sin(4*n*Pi/5)). - Richard Choulet, Dec 14 2008
G.f.: (14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). - R. J. Mathar, Jun 23 2013 [Corrected by Georg Fischer, May 18 2019]
MATHEMATICA
CoefficientList[Series[(14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4), {x, 0, 52}], x] (* Georg Fischer, May 18 2019 *)
LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {14, 23, 36, 51, 69, 90, 114, 143}, 60] (* Harvey P. Dale, Sep 27 2020 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ((x^4+x^3+x^2+x+1)*(x-1)^4)) \\ Felix Fröhlich, May 18 2019
CROSSREFS
Cf. A152898.
Sequence in context: A188166 A184220 A373647 * A316735 A010922 A010902
KEYWORD
nonn,easy
STATUS
approved