login
Expansion of 1/((1-x)(1-x^7)(1-x^12)).
0

%I #9 Jul 30 2015 22:15:06

%S 1,1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,4,4,5,5,6,6,6,7,7,8,8,9,9,9,10,10,

%T 11,11,12,13,13,14,14,15,15,16,17,17,18,18,19,20,21,22,22,23,23,24,25,

%U 26,27,27,28,29,30,31,32,33

%N Expansion of 1/((1-x)(1-x^7)(1-x^12)).

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 1).

%F a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=2, a(8)=2, a(9)=2, a(10)=2, a(11)=2, a(12)=3, a(13)=3, a(14)=4, a(15)=4, a(16)=4, a(17)=4, a(18)=4, a(19)=5, a(n)=a(n-1)+a(n-7)-a(n-8)+a(n-12)-a(n-13)- a(n-19)+ a(n-20). - _Harvey P. Dale_, Jul 29 2013

%t CoefficientList[Series[1/((1-x)(1-x^7)(1-x^12)),{x,0,80}],x] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1,0,0,0,1,-1,0,0,0,0,0,-1,1},{1,1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,4,4,5},80] (* _Harvey P. Dale_, Jul 29 2013 *)

%K nonn

%O 0,8

%A _N. J. A. Sloane_.