OFFSET
1,1
COMMENTS
Every prime (with the exception of 3) can be expressed as 3*k+1 or 3*k-1. - César Aguilera, Apr 13 2013
The associated prime A002476(n) has a unique representation as x^2 + x*y - 2*y^2 = (x + 2*y)*(x-y) with positive integers, namely (x(n), y(n)) = (a(n) + 1, a(n)). See the N. J. A. Sloane, May 31 2014, comment on A002476. - Wolfdieter Lang, Feb 09 2016
For all elements of this sequence there are no (x,y) positive integers such that a(n) = 3*x*y + x + y or a(n) = 3*x*y - x - y. - Pedro Caceres, Jan 28 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
MATHEMATICA
Select[Range[250], PrimeQ[3# + 1] &] (* Vincenzo Librandi, Sep 25 2012 *)
PROG
(Magma) [n: n in [1..1000] | IsPrime(3*n+1)]; // Vincenzo Librandi, Nov 20 2010
(PARI) is(n)=isprime(3*n+1) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved