login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024384
a(n) = s(1)*s(2)*...*s(n+1)*(1/s(2) - 1/s(3) + ... + c/s(n+1)), where c = (-1)^(n+1) and s(k) = 4k-3 for k = 1,2,3,...
2
1, 4, 97, 1064, 32289, 598380, 22574145, 593534160, 26957380545, 920377787220, 48996867845025, 2059752490500600, 125880489657907425, 6289366704447815100, 434143177716332484225, 25139306218115649924000, 1934812150723967345546625, 127427485507344478670350500
OFFSET
1,2
LINKS
FORMULA
a(n) ~ sqrt(Pi) * (8 - sqrt(2)*Pi - 2^(3/2) * log(1 + sqrt(2))) * 2^(2*n - 1/2) * n^(n + 3/4) / (Gamma(1/4) * exp(n)). - Vaclav Kotesovec, Jan 02 2020
MATHEMATICA
Table[Product[4*k - 3, {k, 1, n+1}] * Sum[(-1)^k/(4*k - 3), {k, 2, n+1}], {n, 1, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
PROG
(PARI) a(n)={my(s=vector(n+1, k, 4*k-3)); vecprod(s)*sum(k=2, #s, (-1)^k/s[k])} \\ Andrew Howroyd, Jan 01 2020
CROSSREFS
Sequence in context: A333539 A356808 A041275 * A368004 A320358 A180830
KEYWORD
nonn
EXTENSIONS
Extra initial term removed and a(11) and beyond added by Andrew Howroyd, Jan 01 2020
STATUS
approved