login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024346
Expansion of 1/((1-x)*(1-6*x)*(1-9*x)(1-11*x)).
3
1, 27, 484, 7266, 98959, 1269177, 15642586, 187539120, 2204181925, 25529358855, 292445725936, 3321943348542, 37489352241979, 420930326166741, 4707254688375814, 52473555698990412, 583456285162491601
OFFSET
0,2
FORMULA
a(n) = 27*a(n-1) - 245*a(n-2) + 813*a(n-3) - 594*a(n-4) for n > 3; a(0)=1, a(1)=27, a(2)=484, a(3)=7266. - Vincenzo Librandi, Jul 16 2013
a(n) = (12*11^(n+3) - 25*9^(n+3) + 16*6^(n+3) - 3)/1200. - Yahia Kahloune, Aug 13 2013
E.g.f.: (1/400)*(-exp(x) + 1152*exp(6*x) - 6075*exp(9*x) + 5324*exp(11*x)). - G. C. Greubel, Jan 30 2022
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-6x)(1-9x)(1-11x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 16 2013 *)
LinearRecurrence[{27, -245, 813, -594}, {1, 27, 484, 7266}, 20] (* Harvey P. Dale, Oct 13 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!(1/((1-x)*(1-6*x)*(1-9*x)*(1-11*x)))); /* or */ I:=[1, 27, 484, 7266]; [n le 4 select I[n] else 27*Self(n-1)-245*Self(n-2)+813*Self(n-3)-594*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 16 2013
(PARI) a(n) = (12*11^(n+3) - 25*9^(n+3) + 16*6^(n+3) - 3)/1200; \\ Joerg Arndt, Aug 13 2013
(Sage) [(4*11^(n+3) -75*9^(n+2) +32*6^(n+2) -1)/400 for n in (0..20)] # G. C. Greubel, Jan 30 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved