login
A024155
Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n that are right triangles.
17
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
OFFSET
1,60
COMMENTS
Also number of right integer triangles with perimeter n having integral inradius. - Reinhard Zumkeller, May 05 2002
Every integer-sided right triangle has integer inradius. If the triple is [p^2-q^2,2pq,p^2+q^2] then inradius = pq-q^2. - Michael Somos, Sep 13 2005
LINKS
Eric Weisstein's World of Mathematics, Incircle.
Eric Weisstein's World of Mathematics, Right Triangle.
FORMULA
a(n) = A070201(n) - A070205(n) - A070206(n).
CROSSREFS
KEYWORD
nonn,changed
STATUS
approved