login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023971
First bit in fractional part of binary expansion of 4th root of n.
1
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
a(n) = 0 if k^4 <= n <= k^4 + 2*k^3 + (3*k^2+k)/2,
= 1 if k^4 + 2*k^3 + (3*k^2+k)/2 < n < (k+1)^4. - Robert Israel, Aug 18 2014
LINKS
MAPLE
[seq(floor(2*n^(1/4)) mod 2, n=1..1000)]; # Robert Israel, Aug 18 2014
MATHEMATICA
Array[ Function[ n, RealDigits[ N[ Power[ n, 1/4 ], 10 ], 2 ]// (#[ [ 1, #[ [ 2 ] ]+1 ] ])& ], 110 ]
Table[NumberDigit[Surd[n, 4], -1, 2], {n, 120}] (* Harvey P. Dale, Jul 28 2023 *)
CROSSREFS
Sequence in context: A011670 A011666 A011669 * A185014 A369036 A354948
KEYWORD
nonn,base
STATUS
approved