login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023615
Convolution of Fibonacci numbers and primes.
2
2, 5, 12, 24, 47, 84, 148, 251, 422, 702, 1155, 1894, 3090, 5027, 8164, 13244, 21467, 34772, 56306, 91149, 147528, 238756, 386367, 625212, 1011676, 1636989, 2648768, 4285864, 6934741, 11220718, 18155586, 29376435, 47532158, 76908732, 124441039, 201349922
OFFSET
0,1
LINKS
FORMULA
a(n) = Sum_{1<=k<=n+1} A000040(k)*A000045(n+2-k). - Robert Israel, Jan 18 2018
a(n) = a(n-1) + a(n-2) + prime(n+1). - Alois P. Heinz, Feb 19 2023
MAPLE
N:= 100: # to get a(0)..a(N)
G:= add(ithprime(i)*x^(i-1), i=1..N+1):
S:= series(G /(1-x-x^2), x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Jan 18 2018
# second Maple program:
a:= proc(n) option remember; `if`(n<0, 0,
a(n-1)+a(n-2)+ithprime(n+1))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 19 2023
MATHEMATICA
a[n_] := ListConvolve[Prime[Range[n+1]], Fibonacci[Range[n+1]]][[1]]; Table[a[n], {n, 0, 35}]
(* second program: *)
a[n_] := a[n] = If[n < 0, 0, a[n-1] + a[n-2] + Prime[n+1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 02 2025, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
STATUS
approved