login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023433
Generalized Catalan Numbers.
1
1, 1, 1, 1, 1, 2, 4, 7, 12, 21, 38, 70, 129, 238, 442, 827, 1556, 2939, 5570, 10593, 20214, 38690, 74251, 142844, 275430, 532215, 1030440, 1998733, 3883552, 7557865, 14730670, 28751455, 56192036, 109959882, 215431019, 422541192, 829642870, 1630613418
OFFSET
0,6
LINKS
FORMULA
Recurrence: (n+3)*a(n) = (2*n+3)*a(n-1) - n*a(n-2) + (2*n-3)*a(n-3) + (2*n-9)*a(n-5) - (n-6)*a(n-6) - (2*n-15)*a(n-7) - (n-9)*a(n-8). - Vaclav Kotesovec, Aug 25 2014
a(n) ~ c * d^n / n^(3/2), where d = 2.0423505898306085793498312456063... is the root of the equation -1 - 2*d - d^2 + d^3 - 2*d^4 + d^5 = 0, c = 1.36047848416839112694538628599558274531... . - Vaclav Kotesovec, Aug 25 2014
G.f. A(x) satisfies: A(x) = (1 + x^3 * A(x)^2) / (1 - x + x^3 + x^4). - Ilya Gutkovskiy, Jul 20 2021
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-3-k), k=2..n-3))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 08 2011
MATHEMATICA
Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-3-k ], {k, 2, n-3} ];
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved