login
A023223
Primes p such that 7*p + 2 is also prime.
1
3, 5, 11, 23, 47, 53, 71, 101, 107, 131, 167, 173, 197, 251, 257, 293, 311, 317, 353, 383, 431, 461, 467, 563, 587, 593, 683, 701, 773, 797, 821, 827, 863, 887, 911, 953, 977, 983, 1031, 1091, 1097, 1103, 1151, 1181, 1187, 1193, 1217, 1223, 1277, 1301, 1307, 1373
OFFSET
1,1
COMMENTS
Subsequence of A105772. Except for the first term all others are congruent to 5 (mod 6) because 7*(6n+1)+2 is divisible by 3. - John Cerkan, Jul 08 2016
EXAMPLE
3 is in the sequence because 7 * 3 + 2 = 23, which is prime.
5 is in the sequence because 7 * 5 + 2 = 37, which is prime.
7 is not in the sequence because 7 * 7 + 2 = 51 = 3 * 17.
MATHEMATICA
Select[Prime[Range[250]], PrimeQ[7# + 2] &] (* Alonso del Arte, Apr 08 2015 *)
PROG
(Magma) [n: n in [0..100000] | IsPrime(n) and IsPrime(7*n+2)]; // Vincenzo Librandi, Nov 19 2010
(PARI) lista(nn) = forprime(p=2, nn, if(isprime(7*p+2), print1(p, ", "))); \\ Altug Alkan, Jul 08 2016
CROSSREFS
Sequence in context: A133914 A169913 A260239 * A106086 A072828 A290114
KEYWORD
nonn
STATUS
approved