OFFSET
0,3
COMMENTS
For prime n, a(n) is conjectured to be the period of Bell numbers (mod n). See A054767. - T. D. Noe, Oct 12 2007
For prime n, a(n) is a multiple of the period of Bell numbers mod n (and conjectured to be exactly the period, as mentioned above). - Charles R Greathouse IV, Jul 31 2012
For n >= 1, a(n) is the number whose base n representation is a string of n ones. For example, 11111 in base 5 is a(5) = 781. - Melvin Peralta, May 23 2016
For n > 0, n^(a(n)-1) == 1 (mod a(n)), so for n > 1, a(n) is a prime or a Fermat pseudoprime to base n. - Thomas Ordowski, Mar 15 2021
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..387 (first 101 terms from T. D. Noe)
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16.
FORMULA
a(n) = A125118(n,n-1) for n>1. - Reinhard Zumkeller, Nov 21 2006
a(n) = [x^n] x/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017
EXAMPLE
a(3) = 3^0 + 3^1 + 3^2 = 1+3+9 = 13.
MAPLE
MATHEMATICA
Join[{0, 1}, Table[(n^n-1)/(n-1), {n, 2, 20}]] (* Harvey P. Dale, Aug 01 2014 *)
PROG
(Sage) [lucas_number1(n, n+1, n) for n in range(0, 19)] # Zerinvary Lajos, May 16 2009
(PARI) a(n) = if(n==1, 1, (n^n-1)/(n-1)); \\ Altug Alkan, Oct 04 2017
(Python)
def A023037(n): return (n**n-1)//(n-1) if n>1 else n # Chai Wah Wu, Sep 28 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Entry improved by Tobias Nipkow (nipkow(AT)in.tum.de).
STATUS
approved