login
Expansion of 1/Product_{m>=1} (1 - m*q^m)^29.
2

%I #13 Aug 17 2023 08:15:11

%S 1,29,493,6264,65569,594906,4826325,35745951,245302938,1576968409,

%T 9577863060,55328931365,305653898806,1621966962395,8298721485505,

%U 41068822192297,197116507655270,919734407613752

%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^29.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 29, g(n) = n. - _Seiichi Manyama_, Aug 17 2023

%H Seiichi Manyama, <a href="/A022753/b022753.txt">Table of n, a(n) for n = 0..5000</a>

%F a(0) = 1; a(n) = (29/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 17 2023

%Y Column k=29 of A297328.

%Y Cf. A078308.

%K nonn

%O 0,2

%A _N. J. A. Sloane_