%I #13 Aug 17 2023 08:15:11
%S 1,29,493,6264,65569,594906,4826325,35745951,245302938,1576968409,
%T 9577863060,55328931365,305653898806,1621966962395,8298721485505,
%U 41068822192297,197116507655270,919734407613752
%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^29.
%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 29, g(n) = n. - _Seiichi Manyama_, Aug 17 2023
%H Seiichi Manyama, <a href="/A022753/b022753.txt">Table of n, a(n) for n = 0..5000</a>
%F a(0) = 1; a(n) = (29/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 17 2023
%Y Column k=29 of A297328.
%Y Cf. A078308.
%K nonn
%O 0,2
%A _N. J. A. Sloane_