login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022568
Expansion of Product_{m>=1} (1+x^m)^3.
5
1, 3, 6, 13, 24, 42, 73, 120, 192, 302, 465, 702, 1046, 1536, 2226, 3195, 4536, 6378, 8896, 12306, 16896, 23045, 31224, 42048, 56310, 75000, 99384, 131072, 172071, 224910, 292774, 379608, 490338, 631104, 809472, 1034814, 1318707, 1675344, 2122176, 2680602, 3376728, 4242432, 5316562, 6646272
OFFSET
0,2
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
Mohammed L. Nadji and Moussa Ahmia, Congruences for L-regular tripartitions for L in {2, 3}, Integers (2024) Vol. 24, Art. No. A86. See p. 2.
FORMULA
a(n) ~ exp(Pi * sqrt(n)) / (8 * n^(3/4)) * (1 + (Pi/16 - 3/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Mar 05 2015, extended Jan 16 2017
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^3, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 3; poly[[3]] = 3; poly[[4]] = 1; Do[Do[Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; , {p, 1, 3}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 31 2018 *)
PROG
(PARI) x='x+O('x^51); Vec(prod(m=1, 50, (1 + x^m)^3)) \\ Indranil Ghosh, Apr 03 2017
(Magma) Coefficients(&*[(1+x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
CROSSREFS
Cf. A000009.
Column k=3 of A286335.
Sequence in context: A342646 A342853 A128517 * A120006 A263847 A061567
KEYWORD
nonn
STATUS
approved