login
Positive integers that are not the sum of two nonnegative cubes.
6

%I #15 Nov 06 2012 12:38:05

%S 3,4,5,6,7,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,29,30,31,

%T 32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,56,

%U 57,58,59,60,61,62,63,66,67,68,69,70,71,73,74,75,76,77

%N Positive integers that are not the sum of two nonnegative cubes.

%C Omits the positive cubes (A000578) since m^3 = 0^3 + m^3, so is different from A057903.

%H T. D. Noe, <a href="/A022555/b022555.txt">Table of n, a(n) for n=1..10000</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>

%p read transforms; cub := series(add(q^(n^3),n=0..100),q,1000001); t1 := series(cub^2,q,2000); t2 := POWERS(t1,q,2000); COMPl(t2);

%t r[n_] := Reduce[x >= 0 && y >= 0 && n == x^3 + y^3, {x, y}, Integers]; Select[ Range[80], r[#] === False &] (* _Jean-François Alcover_, Nov 06 2012 *)

%t Select[Range@100,PowersRepresentations[#,2,3]=={}&] (* A much faster solution given by _Giovanni Resta_, Nov 06 2012 *)

%Y Complement of A004999. Cf. A004825, A022561, A022566, A057903, A000578.

%K nonn

%O 1,1

%A _N. J. A. Sloane_.

%E Edited by _N. J. A. Sloane_, Sep 28 2007