login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022239
Gaussian binomial coefficients [ n,10 ] for q = 7.
1
1, 329554457, 95030372653688550, 26922218610904350161500150, 7608029097572151019476340332672053, 2149207789489010647406518443408592558383021
OFFSET
10,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^10/((1-x)*(1-7*x)*(1-49*x)*(1-343*x)*(1-2401*x)*(1-16807*x)*(1-117649*x)*(1-823543*x)*(1-5764801*x)*(1-40353607*x)*(1-282475249*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..10} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
MATHEMATICA
Table[QBinomial[n, 10, 7], {n, 10, 20}] (* Vincenzo Librandi, Aug 12 2016 *)
PROG
(Sage) [gaussian_binomial(n, 10, 7) for n in range(10, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=10; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016
CROSSREFS
Sequence in context: A344926 A344927 A233708 * A222978 A353541 A271112
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 12 2016
STATUS
approved