login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022237
Gaussian binomial coefficients [ n,8 ] for q = 7.
1
1, 6725601, 39579496050501, 228835075951868449701, 1319738336534843578720956303, 7608481579300344488889504665693103, 43861755035533826577243997768793428552803, 252854596323205247053675081227392663237129990403
OFFSET
8,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..8} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^8/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)*(1 - 16807*x)*(1 - 117649*x)*(1 - 823543*x)*(1 - 5764801*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Drop[QBinomial[Range[0, 20], 8, 7], 8] (* Harvey P. Dale, Mar 26 2013 *)
PROG
(Sage) [gaussian_binomial(n, 8, 7) for n in range(8, 15)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
CROSSREFS
Sequence in context: A266914 A234711 A309385 * A273753 A116173 A345608
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
One additional term, offset corrected, Harvey P. Dale, Mar 26 2013
STATUS
approved