login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022235
Gaussian binomial coefficients [ n,6 ] for q = 7.
1
1, 137257, 16484565700, 1945063360640100, 228930106321885702602, 26935000671139346639437914, 3168902828959544132129870582100, 372818701621367349292382501162685300, 43861755035533826577243997768793428552803
OFFSET
6,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..6} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^6/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)*(1 - 16807*x)*(1 - 117649*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 6, 7], {n, 6, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 7) for n in range(6, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=6; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
(PARI) r=6; q=7; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A191819 A015071 A130422 * A234225 A110598 A069336
KEYWORD
nonn
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved