login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022234
Gaussian binomial coefficients [ n,5 ] for q = 7.
1
1, 19608, 336416907, 5670690600800, 95347005938577702, 1602592475815614015216, 26935000671139346639437914, 452697105941691435357049202400, 7608481579300344488889504665693103, 127875753071992714335358328311551866824
OFFSET
5,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..5} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^5/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)*(1 - 16807*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 5, 7], {n, 5, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 5, 7) for n in range(5, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=5; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
(PARI) r=5; q=7; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A156721 A174760 A115472 * A082890 A109569 A204665
KEYWORD
nonn
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved