login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022233
Gaussian binomial coefficients [ n,4 ] for q = 7.
1
1, 2801, 6865251, 16531644851, 39709010932102, 95347005938577702, 228930106321885702602, 549661852436388016181802, 1319738336534843578720956303, 3168691824510592423395247884703, 7608029097572151019476340332672053
OFFSET
4,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..4} (7^(n-i+1)-1)/(7^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^4/((1 - x)*(1 - 7*x)*(1 - 49*x)*(1 - 343*x)*(1 - 2401*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 4, 7], {n, 4, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 4, 7) for n in range(4, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
(PARI) r=4; q=7; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A115471 A292011 A306849 * A102170 A031551 A031731
KEYWORD
nonn
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved