login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022230
Gaussian binomial coefficients [ n,12 ] for q = 6.
1
1, 2612138803, 5848516394205967951, 12790160886494733304250601655, 27862895440026036935366271191556077095, 60659259454351187375733691191139808969963672263, 132044834674141024683472683631781840882298387938848321159
OFFSET
12,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..12} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^12/Product_{k=0..12} (1 - 6^k*x). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 12, 6], {n, 12, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 12, 6) for n in range(12, 19)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
(PARI) r=12; q=6; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A288844 A028521 A064163 * A358483 A034648 A274816
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved