login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Gaussian binomial coefficients [ n,11 ] for q = 6.
1

%I #28 May 22 2022 09:47:52

%S 1,435356467,162458788655384143,59213707780769522731688119,

%T 21499147706200521642647791579711015,

%U 7800830687562794744818371174867996113478343

%N Gaussian binomial coefficients [ n,11 ] for q = 6.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H Vincenzo Librandi, <a href="/A022229/b022229.txt">Table of n, a(n) for n = 11..130</a>

%H <a href="https://oeis.org/index/Ga#Gaussian_binomial_coefficients">Index entries for Gaussian binomial coefficients</a>

%F a(n) ~ k*362797056^n for a constant k. - _Charles R Greathouse IV_, Oct 14 2014

%F G.f.: x^11/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)*(1-1679616*x)*(1-10077696*x)*(1-60466176*x)*(1-362797056*x)). - _Vincenzo Librandi_, Aug 12 2016

%F a(n) = Product_{i=1..11} (6^(n-i+1)-1)/(6^i-1), by definition. - _Vincenzo Librandi_, Aug 12 2016

%p seq(eval(expand(QDifferenceEquations:-QBinomial(n,11,q)),q=6),n=11..20); # _Robert Israel_, Oct 14 2014

%t QBinomial[Range[11,20],11,6] (* _Harvey P. Dale_, Oct 06 2014 *)

%o (Sage) [gaussian_binomial(n,11,6) for n in range(11,17)] # _Zerinvary Lajos_, May 28 2009

%o (Magma) r:=11; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Oct 14 2014

%o (PARI) a(n)=prod(i=1,11,(6^(n-i+1)-1)/(6^i-1)) \\ _Charles R Greathouse IV_, Oct 14 2014

%K nonn,easy

%O 11,2

%A _N. J. A. Sloane_