OFFSET
11,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 11..130
FORMULA
a(n) ~ k*362797056^n for a constant k. - Charles R Greathouse IV, Oct 14 2014
G.f.: x^11/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)*(1-1679616*x)*(1-10077696*x)*(1-60466176*x)*(1-362797056*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..11} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
MAPLE
seq(eval(expand(QDifferenceEquations:-QBinomial(n, 11, q)), q=6), n=11..20); # Robert Israel, Oct 14 2014
MATHEMATICA
QBinomial[Range[11, 20], 11, 6] (* Harvey P. Dale, Oct 06 2014 *)
PROG
(Sage) [gaussian_binomial(n, 11, 6) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Oct 14 2014
(PARI) a(n)=prod(i=1, 11, (6^(n-i+1)-1)/(6^i-1)) \\ Charles R Greathouse IV, Oct 14 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved