login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022229
Gaussian binomial coefficients [ n,11 ] for q = 6.
1
1, 435356467, 162458788655384143, 59213707780769522731688119, 21499147706200521642647791579711015, 7800830687562794744818371174867996113478343
OFFSET
11,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
FORMULA
a(n) ~ k*362797056^n for a constant k. - Charles R Greathouse IV, Oct 14 2014
G.f.: x^11/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)*(1-1679616*x)*(1-10077696*x)*(1-60466176*x)*(1-362797056*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..11} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
MAPLE
seq(eval(expand(QDifferenceEquations:-QBinomial(n, 11, q)), q=6), n=11..20); # Robert Israel, Oct 14 2014
MATHEMATICA
QBinomial[Range[11, 20], 11, 6] (* Harvey P. Dale, Oct 06 2014 *)
PROG
(Sage) [gaussian_binomial(n, 11, 6) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Oct 14 2014
(PARI) a(n)=prod(i=1, 11, (6^(n-i+1)-1)/(6^i-1)) \\ Charles R Greathouse IV, Oct 14 2014
CROSSREFS
Sequence in context: A283872 A233477 A117631 * A022260 A209210 A047989
KEYWORD
nonn,easy
STATUS
approved