login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022228
Gaussian binomial coefficients [ n,10 ] for q = 6.
1
1, 72559411, 4512744117222991, 274137535269957102205111, 16588848493045381066264096333351, 1003193244092547201468344847250540706503, 60660559425600837230512947639888522210296616583, 3667925165214264518763232198536887427772300866095529223
OFFSET
10,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^10/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)*(1-1679616*x)*(1-10077696*x)*(1-60466176*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..10} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
MATHEMATICA
Table[QBinomial[n, 10, 6], {n, 10, 20}] (* Vincenzo Librandi, Aug 12 2016 *)
PROG
(Sage) [gaussian_binomial(n, 10, 6) for n in range(10, 18)] # Zerinvary Lajos, May 27 2009
(Magma) r:=10; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016
(PARI) r=10; q=6; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A104942 A104849 A138058 * A032431 A186535 A244924
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 12 2016
STATUS
approved