login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022227
Gaussian binomial coefficients [ n,9 ] for q = 6.
1
1, 12093235, 125354001240655, 1269155234987097152695, 12800037205947411879866507815, 129011474730413928552335877184470727, 1300166289917858220549677344211755721874055
OFFSET
9,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^9/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)*(1-1679616*x)*(1-10077696*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..9} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
MATHEMATICA
Table[QBinomial[n, 9, 6], {n, 9, 20}] (* Vincenzo Librandi, Aug 12 2016 *)
PROG
(Sage) [gaussian_binomial(n, 9, 6) for n in range(9, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016
(PARI) r=9; q=6; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A345718 A346359 A233634 * A206750 A178056 A132291
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 12 2016
STATUS
approved