login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022225
Gaussian binomial coefficients [ n,7 ] for q = 6.
1
1, 335923, 96723701071, 27202382491194295, 7620806375898728694055, 2133612436978999661759040967, 597287733061433620469903134280071, 167202936130018543413483273700960235527, 46806148995565935663430369990805328306755335
OFFSET
7,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^7/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..7} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
MATHEMATICA
Drop[QBinomial[Range[20], 7, 6], 6] (* Harvey P. Dale, Mar 27 2012 *)
Table[QBinomial[n, 7, 6], {n, 7, 20}] (* Vincenzo Librandi, Aug 12 2016 *)
PROG
(Sage) [gaussian_binomial(n, 7, 6) for n in range(7, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016
(PARI) r=7; q=6; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
CROSSREFS
Sequence in context: A346028 A268280 A234081 * A114674 A185475 A224632
KEYWORD
nonn,easy
STATUS
approved