login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022215
Gaussian binomial coefficients [ n,8 ] for q = 5.
1
1, 488281, 198682027181, 78236053707784181, 30609934249224268600431, 11960833022875371081037525431, 4672499438759279108929231093087931, 1825218456001772231793929085435472462931, 712977784594148279816735342927316866304884806
OFFSET
8,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^8/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)*(1-3125*x)*(1-15625*x)*(1-78125*x)*(1-390625*x)). - Vincenzo Librandi, Aug 10 2016
a(n) = Product_{i=1..8} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 10 2016
MATHEMATICA
Table[QBinomial[n, 8, 5], {n, 8, 20}] (* Vincenzo Librandi, Aug 10 2016 *)
PROG
(Sage) [gaussian_binomial(n, 8, 5) for n in range(8, 17)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
(PARI) r=8; q=5; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 08 2018
CROSSREFS
Sequence in context: A183695 A216070 A163401 * A335083 A252847 A359687
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 10 2016
STATUS
approved