login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022214
Gaussian binomial coefficients [ n,7 ] for q = 5.
1
1, 97656, 7947261556, 625886840206056, 48975769621072897306, 3827456772141158994166056, 299039198587280398947721603556, 23362736428829868448189697999416056, 1825218456001772231793929085435472462931
OFFSET
7,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^7/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)*(1-3125*x)*(1-15625*x)*(1-78125*x)). - Vincenzo Librandi, Aug 10 2016
a(n) = Product_{i=1..7} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 10 2016
MATHEMATICA
Table[QBinomial[n, 7, 5], {n, 7, 20}] (* Harvey P. Dale, Sep 18 2011 *)
PROG
(Sage) [gaussian_binomial(n, 7, 5) for n in range(7, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
(PARI) r=7; q=5; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 04 2018
CROSSREFS
Sequence in context: A184494 A251833 A145659 * A237509 A109185 A253823
KEYWORD
nonn,easy
STATUS
approved