login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022198
Gaussian binomial coefficients [ n,7 ] for q = 3.
1
1, 3280, 8069620, 18326727760, 40581331447162, 89117945389585840, 195168545232713290660, 427028776969176679964080, 934054234760012359481199283, 2042880353039758115797506899680, 4467854961017673003571751798888920
OFFSET
7,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^7/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..7} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 07 2016
MATHEMATICA
Table[QBinomial[n, 7, 3], {n, 7, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
PROG
(Sage) [gaussian_binomial(n, 7, 3) for n in range(7, 18)] # Zerinvary Lajos, May 25 2009
(Magma) r:=7; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
(PARI) r=7; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A043472 A203859 A107536 * A203808 A359844 A215565
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 14 1998
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 07 2016
STATUS
approved