Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:44:46
%S 1,1093,896260,678468820,500777836042,366573514642546,
%T 267598665689058580,195168545232713290660,142299528422960399756323,
%U 103741619611085612124067759,75628919722004322604209288760,55133793282290501540016988429720
%N Gaussian binomial coefficients [ n,6 ] for q = 3.
%H Vincenzo Librandi, <a href="/A022197/b022197.txt">Table of n, a(n) for n = 6..200</a>
%F G.f.: x^6/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)). - _Vincenzo Librandi_, Aug 07 2016
%F a(n) = Product_{i=1..6} (3^(n-i+1)-1)/(3^i-1), by definition. - _Vincenzo Librandi_, Aug 07 2016
%t Table[QBinomial[n, 6, 3], {n, 6, 20}] (* _Vincenzo Librandi_, Aug 07 2016 *)
%o (Sage) [gaussian_binomial(n,6,3) for n in range(6,18)] # _Zerinvary Lajos_, May 25 2009
%o (Magma) r:=6; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 07 2016
%o (PARI) r=6; q=3; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018
%K nonn,easy
%O 6,2
%A _N. J. A. Sloane_
%E Offset changed by _Vincenzo Librandi_, Aug 07 2016