login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022196
Gaussian binomial coefficients [ n,5 ] for q = 3.
1
1, 364, 99463, 25095280, 6174066262, 1506472167928, 366573514642546, 89117945389585840, 21658948312410865183, 5263390747480701708292, 1279025522911365763892449, 310804949350361548416923680, 75525744222315755534269847164
OFFSET
5,2
LINKS
FORMULA
G.f.: x^5/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..5} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 5, 3], {n, 5, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
PROG
(Sage) [gaussian_binomial(n, 5, 3) for n in range(5, 17)] # Zerinvary Lajos, May 25 2009
(Magma) r:=5; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
(PARI) r=5; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A107509 A140935 A249671 * A098252 A221393 A099113
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 07 2016
STATUS
approved