login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022195
Gaussian binomial coefficients [ n,12 ] for q = 2.
1
1, 8191, 44731051, 209386049731, 914807651274739, 3867895279362300499, 16094312257426532376339, 66441249531569955747981459, 273210326382611632738979052435, 1121258922081448861468067825426835, 4597164868683271949171164500871212435
OFFSET
12,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..12} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
MATHEMATICA
Table[QBinomial[n, 12, 2], {n, 12, 200}] (* Vincenzo Librandi, Aug 03 2016 *)
PROG
(Sage) [gaussian_binomial(n, 12, 2) for n in range(12, 23)] # Zerinvary Lajos, May 25 2009
(Magma) r:=12; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
(PARI) r=12; q=2; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A075956 A022529 A161024 * A069388 A069414 A289477
KEYWORD
nonn
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 03 2016
STATUS
approved